
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022 9973

Achieving Efficient and Privacy-Preserving Dynamic
Skyline Query in Online Medical Diagnosis

Songnian Zhang , Suprio Ray , Member, IEEE, Rongxing Lu , Fellow, IEEE, Yandong Zheng ,
Yunguo Guan , and Jun Shao , Member, IEEE

Abstract—Wireless body area network (WBAN) and big data
techniques indubitably enable the online medical diagnosis
system to be more practical. In the system, to make a more
accurate diagnosis, doctors wish to obtain some archived med-
ical data records, which are similar to the sensed patient data,
to learn from the prior diagnoses. As a practically useful sim-
ilarity search, the dynamic skyline query can provide doctors
with similar data records having all possible relative weights of
attributes. Driven by the powerful cloud, the data owner often
outsources encrypted data and the corresponding services, e.g.,
dynamic skyline query services here, to a third-party cloud. As a
result, it is required to perform the dynamic skyline query over
encrypted data. However, existing schemes are either insecure or
inefficient. To address the issue, in this article, we propose an effi-
cient and privacy-preserving dynamic skyline query scheme and
use it in an online medical diagnosis system. Specifically, based
on symmetric homomorphic encryption (SHE), we present a set
of efficient and secure protocols to achieve various operations,
such as less than comparison, equality test, and dominance deter-
mination, without leaking any sensitive information to the cloud.
With these secure protocols, we carefully design our dynamic
skyline query scheme to attain full security and high efficiency
at the same time. Detailed security analysis shows that our
proposed scheme is indeed privacy-preserving. With extensive
experimental evaluations, we show that our proposed scheme
outperforms the alternative scheme by two orders of magnitude
in the computational cost and at least 8.1× in the communication
cost.

Index Terms—Access pattern, dynamic skyline, privacy preser-
vation, skyline query, symmetric homomorphic encryption (SHE).

I. INTRODUCTION

AS a practical application area of Internet of Things (IoT),
the wireless body area network (WBAN) has been widely

studied in the remote/online medical diagnosis system [1]–
[3], in which patients’ physiological data are collected by
biosensors, and doctors can remotely make a medical diagnosis

Manuscript received July 1, 2021; revised September 9, 2021; accepted
October 2, 2021. Date of publication October 5, 2021; date of current version
June 7, 2022. This work was supported in part by NSERC Discovery Grants
under Grant 04009; in part by ZJNSF under Grant LZ18F020003; and in part
by NSFC under Grant U1709217. (Corresponding author: Rongxing Lu.)

Songnian Zhang, Suprio Ray, Rongxing Lu, Yandong Zheng, and
Yunguo Guan are with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: szhang17@unb.ca;
sray@unb.ca; rlu1@unb.ca; yzheng8@unb.ca; yguan4@unb.ca).

Jun Shao is with the School of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou 310018, China (e-mail:
chn.junshao@gmail.com).

Digital Object Identifier 10.1109/JIOT.2021.3117933

according to the sensed data. Meanwhile, the patient’s phys-
iological data and the corresponding diagnosis results can be
archived, and other doctors can make full use of the archived
data to obtain valuable experiences by searching physiologi-
cal data records that are similar to the sensed physiological
data. To have effective and all-sided reference information,
it is desirable for doctors to retrieve similar physiological
data records considering all possible relative weights of the
attributes, e.g., considering one attribute or an arbitrary combi-
nation of attributes [4], which can be achieved by performing
dynamic skyline queries [5]. That is because, with a query
point (sensed physiological data of a patient), the dynamic sky-
line query can find a set of similar physiological data records
(already had diagnosis results), which are close to the given
query point. With these retrieved data records and diagnosis
results, doctors can make a more comprehensive medical anal-
ysis for the patient and thus, have a more accurate diagnosis.
Consequently, the online medical diagnosis system needs to
respond to dynamic skyline queries of doctors such that doc-
tors can search Pareto-similar physiological data records from
the archived data set. See the formal definition and a detailed
example of the dynamic skyline query in Section III-A.

In a real-world scenario, a single hospital generally does
not have sufficient medical data to provide valuable references
for doctors. Therefore, to mine more valuable information,
it is beneficial for hospitals to share their medical data in a
third-party cloud and enable the cloud to provide the query
services [6]. However, it suffers from privacy issues, i.e.,
patients’ physiological data are sensitive, while the cloud is
not fully trusted. A promising solution is to encrypt these out-
sourced data and perform queries over encrypted data [7]–[10].
Although, various schemes [2], [6], [11], [12] were proposed
to deal with skyline queries over encrypted data, they did not
consider the dynamic skyline query, which is the target query
in our paper, and cannot be directly used to tackle such a query.
The reason is that before computing skyline, the dynamic sky-
line query needs to calculate the absolute values between the
data records and the given query point, which results in a gap
between the above schemes and the secure dynamic skyline
query. Recently, the works in [4] and [13] designed schemes
to achieve the secure dynamic skyline query over cloud.
Unfortunately, the work in [13] employed the order reveal-
ing encryption (ORE) to encrypt outsourced data. It leaks the
order relations on each dimension and cannot hide access pat-
terns, which may incur inference attacks [14], [15]. Although
Liu et al. [4] designed a fully secure dynamic skyline query

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0001-8352-0973

9974 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

scheme, i.e., preserving the privacy of outsourced data, query
requests, query results, and access patterns, it has performance
issues due to the inefficient basic protocols. Therefore, it is still
challenging to ensure both the security and efficiency of the
dynamic skyline query scheme at the same time.

In this article, we aim to propose a privacy-preserving
dynamic skyline scheme that can be used in the online medical
diagnosis system. Our proposed scheme has the same security
level as that in [4] while ensuring efficiency. To achieve it,
we first adopt an efficient symmetric homomorphic encryp-
tion (SHE) [10] as our primitive cryptosystem. Based on the
characteristics of SHE, we propose several secure and efficient
protocols to attain necessary operations in the dynamic sky-
line query. First, we design two atomic protocols to securely
execute basic operations: 1) comparison and 2) equality test,
respectively. Then, we devise two secure protocols to accom-
plish more complex operations, i.e., finding minimum value
among n data records and determining dynamic dominance
relation of two data records. All of these protocols are achieved
in a two-server model and are carefully designed to be as effi-
cient as possible without compromising security. Nevertheless,
we also note that since SHE is a leveled fully homomorphic
encryption, i.e., it supports limited homomorphic multiplica-
tion operations, it has to use a bootstrapping protocol [10] to
refresh ciphertexts such that more homomorphic multiplication
operations can be executed. Unfortunately, the bootstrapping
protocol inevitably increases computational and communica-
tion costs. Accordingly, we would like to enable our scheme
to not use bootstrapping. However, since the complex scheme
usually requires a deep homomorphic multiplication chain, it
is challenging to devise SHE-based complex schemes without
bootstrapping. To tackle it, we elaborately design our scheme
so that it uses as little multiplication as possible. Specifically,
the main contributions of this article are threefold as follows.

1) We propose an efficient and privacy-preserving dynamic
skyline query scheme that can be used to achieve a
secure online medical diagnosis system. On the one
hand, from the perspective of security, our proposed
scheme can guarantee the privacy of outsourced data,
query data, query results, and access patterns. On the
other hand, from the perspective of performance, we
ensure the number of homomorphic multiplication oper-
ations in our scheme without increasing with the scheme
execution, making it possible for the maximum multi-
plication depth of SHE to cover the number of homo-
morphic multiplication operations. Thus, our proposed
scheme can avoid using bootstrapping for the static data
set.

2) We carefully devise a set of secure protocols based on
SHE to serve as building blocks, which enriches the
secure computing protocols under a two-server model.
In particular, we first design two secure atomic proto-
cols by using a flip-coin mechanism, which prevents any
protocols’ inputs and outputs related information from
leaking. Then, based on these secure atomic protocols,
we present an efficient and secure dynamic dominance
(SDD) protocol to determine the dynamic dominance
relations. In addition, we devise a secure minimum of

Fig. 1. System model under consideration.

n data records (SMINn) protocol, in which a privacy-
preserving XNOR gate and a private minimum tree
(PM-tree) are proposed to ensure both security and
efficiency.

3) Finally, we analyze the security of our proposed scheme
and conduct extensive experiments to evaluate its
performance. The results show that our proposed scheme
is much more efficient than the alternative scheme that
has the same security level as ours. Specifically, com-
pared with the alternative scheme, our proposed scheme
is two orders of magnitude better in the computation
cost and also at least 8.1× better in the communication
cost.

The remainder of this article is organized as follows. In
Section II, we introduce our system model, security model, and
design goal. Then, we review our preliminaries in Section III.
After that, we present our proposed scheme in Section IV,
followed by security analysis and performance evaluation in
Sections V and VI, respectively. Finally, we discuss some
related works in Section VII and draw our conclusion in
Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

A. System Model

In our system model, we consider a typical cloud-
based online medical diagnosis system with dynamic skyline
queries, which mainly consists of five types of entities:
1) a service provider SP; 2) a set of data owners (hos-
pitals) O = {o1, o2, . . .}; 3) a cloud C with two servers
{CS1, CS2}; 4) multiple query users (doctors) U={u1, u2, . . .};
and 5) patients P={p1, p2, . . .}. Our system model is shown
in Fig. 1.

Service Provider SP: In our system model, SP is the
service organizer and provider, e.g., a health center, who is
responsible for initializing the entire system. SP invites data
owners O = {o1, o2, . . .} to share their medical data and pro-
vides dynamic skyline query services to query users. However,
since SP may not be powerful in storage and computing,
he/she tends to outsource the shared medical data and dynamic

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING DYNAMIC SKYLINE QUERY IN ONLINE MEDICAL DIAGNOSIS 9975

skyline query services to a cloud. Meanwhile, to ensure pri-
vacy, SP provides registration servers to other entities and
authorizes proper keys to different entities.

Data Owners O: We consider hospitals as data owners, who
hold medical data sets but may not have sufficient data to
perform data mining, which drives them to merge their data
together. Generally, a medical data record here includes two
parts: 1) the physiological data collected from patients and
2) the dignosis results from doctors. For ease of description,
in this article, we only show patients’ physiological data and
ignore the diagnostic results. We represent each data record
in the medical data set as a d-dimensional vector, i.e., X =
{xi = (x1

i ,x
2
i , . . . ,x

d
i) | 1 ≤ i ≤ n}, where n is the number of

data records in the data set, and assume that all dimensions
are integers [16]. Since SP would outsource the medical data
to a cloud, it is equivalent to the data owners uploading their
data to the cloud, as shown in Fig. 1.

Cloud C: The cloud contains two servers {CS1, CS2}, which
are considered as powerful in both storage and computing. CS1
receives the outsourced data from data owners O, while CS2 is
authorized with the private key. They will cooperatively offer
reliable dynamic skyline query services to query users.

Query Users U = {u1, u2, . . .}: In the system, the query
users are doctors. First, query users obtain the physiological
data sensed from patients, which actually is the query request
and is denoted as q = (q1,q2, . . . ,qd). Then, they launch
the dynamic skyline query with q and obtain all similar data
records in X without assigning weights for each attribute.
After that, query users can have a comprehensive medical
analysis based on the retrieved data records and return the
final diagnosis results to patients. Before participating in online
medical diagnosis, the query users must be authorized by SP
with the authorized keys. That is, only the authorized query
users can obtain the sensed data from patients and receive
query responses from the cloud C.

Patients P = {p1, p2, . . .}: In our system, patients can enjoy
the online medical diagnosis services by transferring their
physiological data q to the designated doctors. Each patient
is equipped with specific medical sensors (IoT devices) for
collecting physiological data. Before enjoying such online
medical services, patients are required to register to SP .

B. Security Model

In our security model, since the service provider SP ini-
tializes the whole system, and the registered data owners
O hold the medical data of patients, they are considered to
be fully trusted. For patients and query users (doctors), we
consider the authorized ones to be honest. The patients P
will honestly send their sensed physiological data to doctors.
Meanwhile, the query users will sincerely follow the proto-
col to issue the dynamic skyline queries and return diagnosis
results to patients. However, the cloud servers {CS1, CS2} are
considered to be honest-but-curious. That is, they will hon-
estly follow the underlying scheme but may be curious to
learn some private information. To ensure privacy, the data
owners will encrypt their medical data sets before outsourc-
ing them to the cloud C. Therefore, in our model, the cloud

stores the encrypted data sets and provides the dynamic sky-
line query services over these encrypted data. Since the cloud
servers are not fully trusted, they may attempt to obtain pri-
vate information, including the plaintexts of the encrypted data
sets, query requests, and query results, based on the stored data
sets and the process of dynamic skyline queries. We assume
that there is no collusion between CS1 and CS2, as well as
no collusion between the cloud and other entities. It is rea-
sonable since the different cloud servers may have conflicts
of interest, and they wish to maintain their reputations. Note
that there may be other active attacks, e.g., Denial-of-Service
(DoS) attacks, to the system. Since we focus on privacy preser-
vation, those attacks are beyond the scope of this article, and
will be discussed in our future work.

C. Design Goal

In this article, we aim to design a privacy-preserving and
efficient dynamic skyline query scheme under our system
model and security model. In particular, the following objec-
tives should be attained.

1) Privacy Preservation: The basic requirement of our
proposed scheme is privacy preservation. First, the out-
sourced data sets should be kept secret from the cloud
servers. Second, the query requests and query results
should be kept secret from the cloud servers. Besides,
our scheme should hide access patterns.

2) Efficiency: In order to preserve privacy, it is unavoidable
to incur additional costs. As a result, we also aim to
minimize the computational and communication costs
of querying dynamic skyline over encrypted data.

III. PRELIMINARIES

In this section, we first define the problem of the dynamic
skyline query. Then, we introduce the symmetric homomor-
phic encryption (SHE), which will be used as the crypto-
graphic primitive in our proposed scheme. After that, we
introduce two SHE-based atomic protocols that serve as the
building blocks of our proposed scheme.

A. Dynamic Skyline Query

The dynamic skyline query was first introduced in [5] and
is used to find the skyline points with regard to a query point.
Here, we formally define the dynamic skyline query as follows.

Definition 1 (Dynamic Dominance): Given two
d-dimensional points p,r ∈ X and a query point q in
the workplace, p is said to be dynamically dominating r,
denoted as p ≺ r, if ∃j ∈ [1, d] such that |pj−qj| < |rj−qj|
and ∀i ∈ [1, d], i �= j that |pi − qi| ≤ |ri − qi|.

Definition 2 (Dynamic Skyline Query): Given a data set X
and a query point q in the workplace, the dynamic skyline
query returns a data set SK ⊆ X , in which the points are
not dynamically dominated by any other point. That is, SK =
{xi ∈ X | � ∃r ∈ X such that r ≺ xi}.

The dynamic skyline query is suitable to find the points
that are Pareto-similar to the user-interested point. To illus-
trate the dynamic skyline query, we take a 2-D data set as an
example, which contains the common physiological attributes:

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

9976 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 2. Example of the dynamic skyline query.

blood pressure (trestbps) and body temperature (celsius), as
shown in Fig. 2. There are five data records in the exam-
ple: X = {x1,x2, . . . ,x5}. If the sensed physiological data
are q = (120, 37.0), the dynamic skyline query will return
SK = {x4,x5}. We can see that finding dynamic skyline points
is equivalent to compute the traditional skyline that mapped
all points in a new data space where point q is the origin,
and the absolute distances to q are used as new values. For
example, x4 = (130, 36.8) is mapped into (130, 37.2), and
(10, 0.2) will be used to compute skyline points. Note that
in our proposed scheme, the body temperature values will be
scaled into integers before outsourcing.

B. Symmetric Homomorphic Encryption

SHE is an efficient homomorphic encryption that uses the
same key in both encryption and decryption. It was first
proposed in [17] and proved to be CPA secure in [10].
Typically, SHE includes three algorithms, namely: 1) key gen-
eration KeyGen(); 2) encryption Enc(); and 3) decryption
Dec(), as follows.

1) KeyGen(k0, k1, k2): On input security parameters
{k0, k1, k2} satisfying k1
 k2 < k0, the key genera-
tion algorithm first chooses two large prime numbers
p and q with |p| = |q| = k0 and generates the secret
key sk = (p,L), where L is a random number with
|L| = k2. Then, the algorithm computes N = pq and
sets the public parameter pp = (k0, k1, k2,N). Finally,
the basic message space M is set [−2k1−1, 2k1−1).

2) Enc(sk, m): Taking a secret key sk and a message
m ∈M as inputs, the encryption algorithm outputs the
ciphertext E(m) = (rL + m)(1 + r′p) mod N , where
r ∈ {0, 1}k2 and r′ ∈ {0, 1}k0 are random numbers.

3) Dec(sk, E(m)): On input a secret key sk and a ciphertext
E(m), the decryption algorithm recovers a message m′ =
(E(m) mod p) mod L = (m + rL) mod L. If m′ <

(L/2), it indicates m ≥ 0 and m = m′. Otherwise, m < 0
and m = m′ − L.

SHE enjoys the following homomorphic properties.
1) Homomorphic Addition-I: E(m1) + E(m2) mod N →

E(m1 + m2).
2) Homomorphic Multiplication-I: E(m1) · E(m2)

mod N → E(m1 · m2).
3) Homomorphic Addition-II: E(m1) + m2 mod N →

E(m1 + m2).
4) Homomorphic Multiplication-II: E(m1) ·m2 mod N →

E(m1 · m2) when m2 > 0.

Although SHE can support almost an unlimited
number of homomorphic operations of Homomorphic
addition-I, Homomorphic addition-II, and Homomorphic
multiplication-II, it has the limited number of operation of
Homomorphic multiplication-I. Therefore, SHE is also a
leveled fully homomorphic encryption.

Maximum Multiplicative Depth: After conducting one
Homomorphic multiplication-I operation, the newly generated
ciphertext has the largest noise term r1r2L2. To ensure the
decryption correctness, we should guarantee that r1r2L2 < p.
Recalling the KeyGen() and Enc() algorithms, we have
|p| = k0, |L| = k2, and |r1| = |r2| = k2. Therefore,
if we set the maximum multiplicative depth as σ , we have
2(σ + 1)k2 < k0, i.e., σ = �(k0/2k2)− 1�.

To make SHE support an infinite number of homomorphic
multiplication-I, Zheng et al. [10] proposed a bootstrapping
protocol to remove the largest noise term r1r2L2. However,
this protocol incurs additional computational and communi-
cation costs. To avoid using the bootstrapping protocol, we
carefully devise our proposed scheme and limit the number of
the homomorphic multiplication-I operation to be less than σ .

Encryption With Public Key: SHE can encrypt messages
with {E(0)1, E(0)2} by using the homomorphic properties,
where E(0)1 and E(0)2 denote the ciphertext of 0 with dif-
ferent random numbers. If we treat these ciphertexts as a
public key pk, we have the other encryption algorithm of SHE
Encpk(pk, m), which can output ciphertext E(m) as follows:

E(m) = m+ r1 · E(0)1 + r2 · E(0)2 mod N (1)

where r1 and r2 ∈ {0, 1}k2 are two random numbers. In
some scenarios, one entity may only need to encrypt mes-
sages. If we authorize sk to the entity, it may lower the
security of the whole system. In such a case, we can trans-
fer pk = {E(0)1, E(0)2}, instead of sk, to the entity who can
encrypt messages with (1). Note that this approach has been
proven to be IND-CPA secure in [18].

C. SHE-Based Atomic Protocols

Based on the nice homomorphic properties of SHE, we
design two secure atomic protocols: 1) secure less than
(SLESS) and 2) secure equal (SEQ) protocols to determine
less than and equality over encrypted data, respectively. We
achieve these protocols in a two-server model, where CS1 has
{E(m1), E(m2), pk}, and CS2 holds the secret key sk.

Secure Less Than Protocol: The goal of the protocol is to
determine whether m1 < m2 without leaking any m1 and m2
related information to CS1 or CS2. If m1 < m2, the protocol
outputs E(1), otherwise, E(0).

Step 1: CS1 flips a coin s ∈ {−1, 1} and chooses
two random numbers r1, r2 ∈ {0, 1}k1 satisfying
r1 > r2 > 0. Then, CS1 computes

E(α) = E(s · r1) · (E(m1)+ E(m2) · E(−1))+ E(s · r2)

= E(s · r1 · (m1 − m2)+ s · r2).

Afterward, CS1 sends E(α) to CS2.
Step 2: On receiving E(α), CS2 first uses sk to recover α.

Then, CS2 checks whether α < 0. If yes, CS2

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING DYNAMIC SKYLINE QUERY IN ONLINE MEDICAL DIAGNOSIS 9977

makes θ = 1 and encrypts it into E(θ). Otherwise,
CS2 generates E(θ) = E(0). Next, CS2 returns
E(θ) to CS1.

Step 3: If s = 1, CS1 lets E(δ) = E(θ). If s = −1, CS1
computes E(δ) = E(1)+E(θ) ·E(−1) = E(1− θ).
Finally, E(δ) is the output of our SLESS protocol.

Correctness: When s = 1, we have E(α) = E(r1 · (m1 −
m2) + r2). If m1 < m2, α < 0. As a result, E(δ) = E(θ) =
E(1). If m1 ≥ m2, α > 0. In this case, E(δ) = E(θ) = E(0).
Therefore, when s = 1, iff m1 < m2, the output of SLESS
protocol is E(δ) = E(1). When s = −1, we have E(α) =
E(r1 · (m2 − m1) − r2). If m1 < m2, α > 0. As a result,
E(δ) = E(1 − θ) = E(1 − 0) = E(1). If m1 ≥ m2, α < 0.
In this case, E(δ) = E(1− θ) = E(1− 1) = E(0). Therefore,
when s = −1, iff m1 < m2, the output of SLESS protocol is
E(δ) = E(1). Thus, our SLESS protocol is correct.

Secure Equal Protocol: This protocol is used to determine

whether m1
?= m2 without leaking any m1 and m2 related

information to CS1 or CS2. If m1 = m2, the protocol outputs
E(1), otherwise, E(0).

Step 1: CS1 flips a coin s ∈ {−1, 1} and chooses two ran-
dom numbers r1, r2 ∈ {0, 1}k1 satisfying r1 > r2 >

0. Then, CS1 computes E(α) = E(s · r1 · (m1 −
m2)

2 − s · r2). Afterward, CS1 sends E(α) to CS2.
Step 2: On receiving E(α), CS2 first uses sk to recover

α. Then, CS2 checks whether α < 0. If yes, CS2
makes θ = 1 and encrypts it into E(θ). Otherwise,
CS2 generates E(θ) = E(0). Next, CS2 returns
E(θ) to CS1.

Step 3: If s = 1, CS1 lets E(δ) = E(θ). If s = −1, CS1
computes E(δ) = E(1)+E(θ) ·E(−1) = E(1− θ).
Finally, E(δ) is the output of our SEQ protocol.

Correctness: Similar to the correctness proof of the SLESS
protocol, we can easily obtain that our SEQ protocol is correct.

IV. OUR PROPOSED SCHEME

In this section, we first present two novel secure protocols,
which will be employed in our proposed scheme. Then, we
propose our privacy-preserving dynamic skyline query scheme
and online medical diagnosis scheme.

A. Secure Protocols

The main idea of our privacy-preserving dynamic skyline
query scheme is to find the data record that has the minimum
sum value of all dimensions. This data record must be a skyline
point. Then, after removing the data records that are dominated
by the skyline point, a new round can be launched to find the
next skyline point that has the minimum sum value among the
remaining data records. When all data records are removed,
it indicates that all skyline points are found. Obviously, there
are two important operations in the above idea: 1) finding
the data record has the minimum sum value and 2) deter-
mining dominance relation of two data records. Although it
is easy to execute these two operations over plaintexts, it is
challenging to perform them over encrypted data while ensur-
ing both security and efficiency. In this article, we design two
secure protocols: 1) secure minimum of n messages (SMINn)

(a) (b)

Fig. 3. XNOR gate symbol and truth table. (a) XNOR gate: out = a � b.
(b) Truth table.

protocol and 2) secure dynamic dominance (SDD) protocol,
to securely and efficiently achieve the above two operations,
respectively.

1) SMINn: Before delving into the details of the SMINn
protocol, we first introduce a digital logic gate XNOR that
takes a logical complement of the exclusive OR (XOR) gate.
Typically, XNOR gate has two inputs {a, b} and one output
(out), and the algebraic notation is out = a� b, as shown in
Fig. 3(a). We present the truth table of XNOR in Fig. 3(b) and
observe the following facts: 1) if a = 0, out = 1− b and 2) if
a = 1, out = b. In this article, one of the inputs of XNOR
is in plaintext, while the other is in ciphertext. Thus, we have
the privacy-preserving version of XNOR as follows:

E(out) = a� E(b) =
{

E(1− b), if a = 0
E(b), if a = 1

(2)

where E(1 − b) = E(1) + E(−1) · E(b). From (2), we can
see that the privacy-preserving XNOR gate guarantees both
security and efficiency. First, if the input E(b) is secret, the
output E(out) would also be secret. Second, it is efficient to
compute E(out) if the operator knows the input a.

Assume CS1 has a set of encrypted messages {E(mi) | i ∈
[1, n], mi ∈ M}, and CS2 holds sk. The goal of the SMINn
protocol is to find the minimum value E(mmin) among n
encrypted values {E(mi) | i ∈ [1, n]} without leaking under-
lying plaintexts and access patterns. That is, neither CS1 nor
CS2 knows the plaintexts of {E(mmin), E(mi) | i ∈ [1, n]} or
the information about which item in {E(mi) | i ∈ [1, n]} has the
minimum plaintext. Besides, this protocol needs to minimize
performance costs.

To achieve the above goals, we propose a private minimum
tree, denoted as PM-tree, to find E(mmin) while ensuring both
privacy and performance. We depict the process of the tree
building as follows.

Step 1: CS1 first permutes these encrypted values:
π({E(mi) | i ∈ [1, n]}), then every 2k (k ≥
2 and 2k
 n) encrypted values are divided into
a group, denoted as {E(m′j) | j ∈ [0, 2k − 1]}. For
each group, CS1 chooses 2k + 1 random numbers
{rj | j ∈ [0, 2k]} satisfying r2k > r0, r1, . . . , r2k−1
and calculates E(m̃j) = E(r2k · m′j + rj), where
j ∈ [0, 2k − 1]. Afterward, CS1 sends {E(m̃j) | j ∈
[0, 2k − 1]} to CS2.

Step 2: On receiving {E(m̃j) | j ∈ [0, 2k − 1]}, CS2 first
uses sk to recover m̃j. Then, CS2 compares these
plaintexts {m̃j | j ∈ [0, 2k−1]} and obtains the index

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

9978 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 4. Example of PM-tree.

TABLE I
FIELDS OF LEAF AND NONLEAF NODES

φ of the minimum one. After that, CS2 converts
φ to a bit sequence bφ ∈ {0, 1}k and generates
{E(bφ[i]) | i ∈ [0, k − 1]} by encrypting each bit
of bφ . Next, CS2 sends {E(bφ[i]) | i ∈ [0, k − 1]}
to CS1.

Step 3: According to the order of the members in group
{E(m̃j) | j ∈ [0, 2k − 1]}, CS1 encodes the index j
of each member into a bit sequence, denoted as
{aj[i] | i ∈ [0, k − 1]}. Then, with {E(bφ[i]) | i ∈
[0, k−1]}, CS1 runs the privacy-preserving XNOR
gate to compute flags {E(δj) | j ∈ [0, 2k − 1]}
for each member in the group, i.e., E(δj) =∏k−1

i=0 (aj[i]�E(bφ[i])). Finally, CS1 computes the
encrypted minimum value of the group: E(ms) =∑2k−1

j=0 (E(δj) · E(m′j)).
After obtaining the encrypted minimum values for each

group, CS1 collects all of them and repeatably performs steps
1–3 until there is only one encrypted minimum value. This
encrypted value would contain the minimum value among n
encrypted values. When PM-tree is built, the root node is the
output of the SMINn protocol.

Correctness: For one group, only if φ = j, the corresponding
member E(m′j) is selected as the minimum value. CS1 encodes
j into a bit sequence {aj[i]}, while CS2 returns an encrypted
bit sequence {E(bφ[i])}. From our privacy-preserving XNOR
operation, we know that E(δj) = E(1) iff φ = j, otherwise,
E(δj) = E(0). Therefore, E(ms) = E(1) · E(m′φ) = E(m′φ) is
the encrypted minimum value of the group. Since the mini-
mum value is further selected from groups’ minimum values,
the last group’s minimum value is E(mmin).

As shown in Fig. 4, we take an example of PM-tree, in
which we assume n = 15, k = 2, and mmin = m7. In PM-
tree, the leaf node has three fields: (id, value, and gIndex),
while the nonleaf node has five fields: (id, value, gIndex,
mIndex, and pointers). We list the detailed description of

these fields in Table I. Note that the gIndex of root node
is empty, denoted as ⊥. Taking computing E(ms2) as an
example, CS2 can obtain the index φ = 2 after receiv-
ing {E(m4), E(m14), E(m7), E(m13)}. Then, CS2 generates
{E(bφ[0]) = E(1), E(bφ[1]) = E(0)} and returns them to CS1.
Since the index of {E(m4), E(m14), E(m7), E(m13)} is encoded
as {00, 01, 10, 11}, i.e., {a0[i], a1[i], a2[i], a3[i] | i ∈ [0, 1]}. By
using our privacy-preserving XNOR gate, only E(δ2) = E(1),
while E(δ0), E(δ1), and E(δ3) are E(0). Thus, E(ms2) = E(δ0)·
E(m4)+E(δ1)·E(m14)+E(δ2)·E(m7)+E(δ3)·E(m13) = E(m7).

Remark: To obtain minimum value E(mmin) among n
encrypted values, an intuitive approach [4] is to compute a
minimum value of two encrypted values and then use it and the
third encrypted value to compute the minimum value among
these three encrypted values. Repeating n − 1, E(mmin) can
be computed. However, this approach needs n − 1 rounds
and 2 · (n − 1) ciphertexts in terms of communication costs.
In our PM-tree, it requires �([n− 1]/[2k − 1])� rounds and
�([n− 1]/[2k − 1])� · (2k + k) ciphertexts communication to
complete our SMINn protocol. It is definite that our PM-tree
has less communication rounds in all cases. For the number
of ciphertexts, when k = 2, it is approximate. When k > 3,
PM-tree transfers less ciphertexts.

2) SDD: Assume CS1 has two encrypted d-dimensional
data records E(x1), E(x2), an encrypted query point E(q)

and pk, where E(xi) = (E(x1
i), E(x2

i), . . . , E(xd
i)) for i =

1, 2, and E(q) = (E(q1), E(q2), . . . , E(qd)), while CS2
holds sk. The goal of the SDD protocol is to determine
whether x1 dynamically dominates x2 with regard to q (see
Definition 1) over encrypted data. If yes, the SDD protocol
outputs E(1), otherwise, E(0). Before introducing the proto-
col, we assume CS1 has obtained E(ti

1) = E((xi
1− qi)2) and

E(ti
2) = E((xi

2 − qi)2) for i ∈ [1, d] by using homomorphic
properties.

Following Definition 1, a solution [4] is to check whether
ti

1 ≤ ti
2 for each dimension. After obtaining d out-

puts, denoted as {E(δi) | i ∈ [1, d]}, CS1 can perform the
homomorphic multiplication-I operation to obtain E(δ) =∏d

i=1 E(δi). After that, CS1 can have the encrypted dynamic
dominance relation by determining whether ∃i such that
ti

1 < ti
2 with the SLESS protocol. However, this approach

is inefficient in the communication cost and needs too
many homomorphic multiplication-I operations. To improve
the efficiency and lower the number of the homomorphic
multiplication-I operation, we present our SDD protocol as
follows.

Step 1: For the ith-dimension, CS1 flips a coin si ∈ {−1, 1}
and chooses two random numbers ri

1, ri
2 ∈ {0, 1}k1

satisfying ri
1 > ri

2 > 0. Afterward, CS1 computes
E(αi) = E(si · ri

1 · (ti
1 − ti

2) − si · ri
2). If si = 1,

θ i
1 = 2i, otherwise, θ i

1 = 0. Next, CS1 computes
θ1 =∑d

i=1 θ i
1, generates E(θ1) using (1), and sends

{E(αi) | i ∈ [1, d]} to CS2.
Step 2: On receiving {E(αi) | i ∈ [1, d]}, CS2 first uses sk

to recover αi. If αi < 0, CS2 computes θ i
2 = 2i.

Otherwise, θ i
2 = 0. Then, CS2 computes θ2 =∑d

i=1 θ i
2 and encrypts it into E(θ2). Next, CS2

sends E(θ2) to CS1.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING DYNAMIC SKYLINE QUERY IN ONLINE MEDICAL DIAGNOSIS 9979

Step 3: With E(θ1) (calculated in step 1) and E(θ2), CS1

runs the SEQ protocol to test whether θ1
?= θ2. If

θ1 = θ2, the SEQ protocol returns E(δ1) = E(1),
otherwise, E(δ1) = E(0).

Step 4: CS2 adds up the values of all dimensions of E(ti
1)

and E(ti
2) (i ∈ [1, d]), i.e., E(st1) = E(

∑d
i=1 t

i
1)

and E(st2) = E(
∑d

i=1 t
i
2). Next, CS1 runs the

SLESS protocol to determine whether st1 < st2 .
If yes, the SLESS protocol returns E(δ2) = E(1),
otherwise, E(δ2) = E(0).

Step 5: With E(δ1) and E(δ2), CS1 computes E(δ) =
E(δ1) ·E(δ2) = E(δ1 · δ2) as the output of our SDD
protocol.

Correctness: Since checking dynamic dominance relations
only needs to compare the absolute values, it is equivalent to
comparing the square of the differences. When si = 1, we have
θ i

1 = 2i. If ti
1−ti

2 ≤ 0, αi = (ri
1 · (ti

1−ti
2)− ri

2) < 0, leading
to θ i

2 = 2i. As a result, θ i
1 = θ i

2. If ti
1 − ti

2 > 0, it means
αi > 0, leading to θ i

2 = 0. As a result, θ i
1 = 2i �= θ i

2 = 0. Thus,
when si = 1, iff ∀i ∈ [1, d]: ti

1−ti
2 ≤ 0, we have θ1 = θ2 and

E(δ1) = E(1). Similarly, we can prove that when si = −1, iff
∀i ∈ [1, d]: ti

1−ti
2 ≤ 0, we have E(δ1) = E(1). Furthermore,

∃i,ti
1 < ti

2 (under the condition of ∀i,ti
1 ≤ ti

2) indicates
that st1 < st2 . In this case, SLESS returns E(δ2) = E(1).
Otherwise, E(δ2) = E(0). Thus, E(δ) = E(δ1 · δ2) = E(1), iff
E(x1) dynamically dominates E(x2).

Remark: We can see that our proposed SDD protocol only
needs two rounds of communication to determine whether
∀i, ti

1 ≤ ti
2, while there are d rounds for the solution

in [4]. Besides, the maximum multiplicative depth of our SDD
protocol is one, while it is also d for the protocol in [4].

B. Privacy-Preserving Dynamic Skyline Query

Given an encrypted data set {E(xi) = (E(x1
i), E(x2

i), . . . ,

E(xd
i)) | i ∈ [1, n]} and an encrypted query point E(q) =

(E(q1), E(q2), . . . , E(qd)), our privacy-preserving dynamic
skyline query scheme can efficiently find dynamic sky-
line without leaking underlying plaintexts (including data
set, query point, and query results), single-dimensional pri-
vacy, and access patterns to CS1 or CS2. Here, the single-
dimensional privacy indicates the order or equality relation of
values in each dimension, while the access patterns mean the
information about which data records are selected as the final
skyline. From the main idea discussed in Section IV-A, there
are three phases to securely compute dynamic skyline: 1) pre-
processing; 2) finding one skyline point; and 3) updating sum
values, which is formally depicted in Algorithm 1.

1) Preprocessing: In the preprocessing phase, CS1 gener-
ates two encrypted sets by using the homomorphic properties

T =
{
E(ti) =

(
E

(
t1

i

)
, E

(
t2

i

)
, . . . , E

(
td

i

))
| 1 ≤ i ≤ n

}

S =
⎧⎨
⎩E(si) = E

⎛
⎝(n+ 1) ·

d∑
j=1

tj
i + i

⎞
⎠ | 1 ≤ i ≤ n

⎫⎬
⎭ (3)

where E(tj
i) = E((xj

i − qj)2), and the items in S set are the
sum of all dimensions of the corresponding items in T set. To

Algorithm 1 Retrieve Dynamic Skyline
Input: An encrypted dataset E(X) with n records. A query point E(q). An

encrypted maximum value E(MAX).
Output: A set containing encrypted dynamic skyline points, Ssky.
1: Ssky ← ∅; T ← ∅; S ← ∅;
2: Sd ← {E(ρi) = E(0)|i ∈ [1, n]}
3: for i = 1 to n do
4: E(t

j
i)=E((x

j
i − qj)2), j ∈ [1, d], and adds it into set T .

5: E(si)= E((n+ 1) ·∑d
j=1 t

j
i + i), and adds it into set S.

6: E(smin), PM-tree ← SMINn({E(si)|i ∈ [1, n]}).
7: if LESS(E(smin), E(MAX))==0 then
8: break
9: root ← PM-tree.root; eflags ← ∅

10: mIndexList.addAll(root.mIndex)
11: RecursiveSearch(root, mIndexList, eflags)
12: for j = 1 to d do
13: E(x

j
sky)←∑n

i=1(E(x
j
i) · eflags[i− 1])

14: E(t
j
sky)←∑n

i=1(E(t
j
i) · eflags[i− 1])

15: E(xsky) = (E(x1
sky), E(x2

sky), · · · , E(xd
sky))

16: E(tsky) = (E(t1
sky), E(t2

sky), · · · , E(td
sky))

17: Ssky.add(E(xsky))
18: for i = 1 to n do
19: E(δi)← Modified SDD(E(tsky), E(ti), eflags[i− 1])
20: E(ρi)← E(ρi)+ E(δi)
21: E(s̃i)← E(ρi) · (E(MAX)− E(si))+ E(si)

22: E(smin), PM-tree ← SMINn({E(s̃i)|i ∈ [1, n]}).
23: GOTO line 7
24:
25: function RecursiveSearch(node, mIndexList, eflags)
26: for each childNode of node do
27: gIndexList.addAll(childNode.gIndex)
28: if childNode is leaf then
29: l ← gIndexList.len()
30: E(δ) ← ∏l−1

i=0 gIndexList[i] � mIndexList[i]
31: eflags.add(E(δ))
32: else
33: mIndexList.addAll(childNode.mIndex)
34: RecursiveSearch(childNode, mIndexList, eflags)

avoid the equal summed values in S set, we first scale the sum
value by multiplying n + 1 and then add the corresponding
index value into the scaled value. This approach makes the
sum values different without changing their order relations.
Besides, we initialize a dominance flag set Sd with n encrypted
0, i.e., E(0), which will be used in the updating sum values
phase. See lines 1–5 for the preprocessing phase.

2) Finding One Skyline Point: In our scheme, the key idea
of finding a skyline point is to search the data record that
has the minimum sum value. As a result, we can obtain an
encrypted skyline point by finding the minimum value E(smin)

in S set with our SMINn protocol. However, since we hide
access patterns in our SMINn protocol, i.e., the cloud does
not know which item in S has the minimum value, CS1 can-
not directly obtain the skyline point according to E(smin).
To tackle this issue, we propose a novel approach by using
our privacy-preserving XNOR gate and PM-tree. Specifically,
CS1 traverses the PM-tree and collects both the gIndex and
mIndex on the path. When reaching a leaf node, CS1 uses the
privacy-preserving XNOR gate (see details in Section IV-A1)
to determine whether the gIndex bit sequence and mIndex bit
sequence (ciphertexts) are the same. If yes, the corresponding
leaf node E(xi) has an encrypted flag E(fi) = E(1). Otherwise,
E(fi) = E(0). Since only the minimum value in S has a flag

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

9980 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

E(fi) = E(1), CS1 can compute the skyline point by multiply-
ing the leaf node’s value and the corresponding flag and then
adding up all the results

E
(
xj

sky

)
=

n∑
i=1

(
E

(
xj

i

)
· E(fi)

)

E
(
tj

sky

)
=

n∑
i=1

(
E

(
tj

i

)
· E(fi)

)
(4)

where j ∈ [1, d]. Finally, the skyline point is: E(xsky) =
(E(x1

sky), E(x2
sky), . . . , E(xd

sky)). This phase is shown from

lines 9 to 17. Note that E(tj
sky) will be used in the next phase.

3) Updating Sum Values: Before finding the next skyline
point by the above approach, we need to “remove” the skyline
point found in the second phase and the data records that
are dominated by this skyline point from the original data set
{E(xi) | i ∈ [1, n]}. Our approach is to update the sum values
of the data records that need to be removed and thus, make
them impossible to become the new skyline point.

Updating Sum Values of Dominated Data Records: With
E(tsky) = (E(t1

sky), E(t2
sky), . . . , E(td

sky)) and the T set, CS1
can adopt the SDD protocol to check whether E(xsky) dynam-
ically dominates the points in {E(xi) | i ∈ [1, n]}. If yes, the
SDD protocol outputs E(δi) = E(1) for the corresponding data
record E(xi). Otherwise, E(δi) = E(0). Consequently, the sum
value of each data record can be updated by

E(si) = E(δi) · (E(MAX)− E(si))+ E(si) (5)

where MAX > max(si) is a preset value. When E(δi) = E(0),
the equation will keep the original sum value. When E(δi) =
E(1), the sum value will be update as MAX. Since MAX >

max(si), the dominated data points will be impossible to be a
skyline point in the next round, which is equivalent to removing
them from the original data set. However, since the updated sum
values will be used as inputs for the SMINn protocol to find a
new skyline point in the next round, the number of homomorphic
multiplication-I operation may increase with the number of
skyline search rounds. To achieve a fixed multiplicative depth,
we still use the idea of (5) to update sum values but with a
different approach. First, we initialize a dominance flag set
Sd = {E(ρi) = E(0) | i ∈ [1, n]} in the first phase and update
E(ρi) using the homomorphic addition-I operation

E(ρi) = E(ρi)+ E(δi) = E(ρi + δi).

Then, the sum value can be updated as the following equation:

E(s̃i) = E(ρi) · (E(MAX)− E(si))+ E(si) (6)

in which E(s̃i) is the updated sum value, and E(si) is the
original sum value of E(xi). If E(xi) is not dominated by
other skyline points, E(ρi) = E(0) and the original sum value
will be kept. Otherwise, E(ρi) ≥ E(1), the updated sum value
will be no less than MAX. This approach only involves three
homomorphic multiplication-I operations no matter how many
rounds. One is from step 5 in the SDD protocol, and the others
are from (6). See lines 2 and 18–21 for details.

Updating Sum Value of the Skyline Point: However, there
is still a problem, i.e., {E(xi) | i ∈ [1, n]} exists a data record

that is the same as E(xsky). We denote the data point as E(xs)

and the corresponding difference square as E(ts). The SDD
protocol will output E(0) for E(xs) when checking the dom-
inance relation between E(xsky) and E(xs). It means the sum
value of E(ts) will not be updated. Consequently, E(xs) is not
removed from the original data set. To deal with the problem,
we devise a low-cost approach by modifying the SDD proto-
col without affecting the regular function of the protocol. In
our SDD protocol, the key point to output E(0) for E(xs) is
step 4 (Section IV-A2). That is because xsky and xs are the
same in each dimension, leading to stsky to be equal to sts .
As a result, E(δ2) = E(0) ⇒ E(δ) = E(0) is the output of
our SDD protocol. If we modify E(st2) = E(

∑d
i=1 t

i
2) to

E(st2) = E(
∑d

i=1 t
i
2) + E(f2) in step 4 of Section IV-A2,

where E(f2) is the corresponding minimum flag of x2 (see
the second phase in this section), the modified SDD proto-
col will output E(1) for E(xs), because the minimum flag
of E(xs) is E(1), i.e., E(fs) = E(1), and E(stsky) < E(sts).
Besides, only E(fs) is E(1), and the minimum flags of the other
data records are E(0). Therefore, the modified SDD protocol
does not affect the other data points in checking dominance
relations.

After updating the sum values of dominated data points and
skyline point, CS1 goes back to the second phase to find a new
skyline point. Repeat the second and the third phases until the
minimum sum value smin ≥ MAX, which means all skyline
points have been added into the skyline set Ssky. Here, to
determine whether smin < MAX, we use an LESS protocol by
making CS2 return plaintext θ in the SLESS protocol.

Discussion About Maximum Multiplicative Depth: We
carefully design our scheme to achieve a relatively small
multiplicative depth. In the preprocessing phase, there are
two homomorphic multiplication-I operations, i.e., calculat-
ing E(tj

i). In the second phase, the SMINn protocol will
incur �log n� − 1 homomorphic multiplication-I operations
to compute the corresponding flags. Totally, there will be
�log n�− 1+ 1 = �log n� homomorphic multiplication-I oper-
ations in the phase. As for the third phase, we have known
that there are three homomorphic multiplication-I operations.
Therefore, the maximum multiplicative depth of our scheme
is �log n� + 5.

C. Description of Our Proposed Scheme

In this section, we present our online medical diagnosis
system, which is comprised of four phases: 1) system initial-
ization; 2) data outsourcing; 3) dynamic skyline search; and
4) local diagnosis.

1) System Initialization: The service provider SP is
responsible for initializing the whole system. First, given the
security parameters (k0, k1, k2), SP uses KeyGen(k0, k1, k2)

to generate the secret key sk. Meanwhile, SP generates cipher-
texts {E(0)1, E(0)2, E(−1)}, in which the set {E(0)1, E(0)2}
is the pubic key pk of SHE, and E(−1) is a public parameter.
Then, SP chooses a secure hash function H(), e.g., SHA-256,
and a public-key encryption PKE(), e.g., ElGamal. After that,
SP generates three master keys ko, ku, and kp for data owners,
query users, and patients, respectively.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING DYNAMIC SKYLINE QUERY IN ONLINE MEDICAL DIAGNOSIS 9981

1) When a data owner oi with its identity IDoi registers to
the system, SP authorizes koi = H(IDoi, ko) to oi.

2) When a query user (doctor) ui with his/her identity IDui

registers to the system, SP authorizes kui = H(IDui, ku)

and kp to ui. Besides, SP calls the key generation of
PKE() to generate a pair (skui, pkui) for ui and sends
skui to ui.

3) When a patient pi with his/her identity IDpi registers to
the system, SP authorizes kpi = H(IDpi, kp) to pi.

Next, SP publishes {pk, H(), PKE(), E(−1)}, sends {ko, ku}
to CS1, and authorizes sk to CS2.

2) Data Outsourcing: Assume a data owner oi has a med-
ical data set X = {xi | 0 ≤ i ≤ n}, and each data record has
d dimensions. With pk, oi first encrypts these data records
into {E(xi) | i ∈ [1, n]} by using (1). Here, we ignore the
diagnosis results for ease of description, since they are not
involved in the dynamic skyline search. Then, oi chooses the
first encrypted data record E(x1) to compute H(E(x1), koi).
Next, oi transfers {E(xi) | i ∈ [1, n]}||H(E(x1), koi)||IDoi to
CS1. Upon receiving it, CS1 first computes koi = H(IDoi, ko)

with the authorized ko. Then, CS1 extracts E(x1) from
{E(xi) | i ∈ [1, n]} and calculates H(E(x1), koi). If the calcu-
lated H(E(x1), koi) is the same as the received H(E(x1), koi),
CS1 accepts these encrypted data records, otherwise, rejects.

3) Dynamic Skyline Search: When a patient pi would like
to utilize the online medical diagnosis services, he/she would
first choose a doctor (query user) ui and encrypt the sensed
physiological data q = (q1,q2, . . . ,qd) with the doctor’s pub-
lic key pkui, which is denoted as EPKE(q). Then, pi generates
and sends EPKE(q)||H(EPKE(q), kpi)||IDpi to the doctor ui.
After receiving it, ui first computes kpi = H(IDpi, kp) with
kp and checks whether H(EPKE(q), kpi) is correct. If yes, ui

accepts the diagnosis request and recovers the sensed data q
from EPKE(q) with skui, otherwise, rejects.

After that, ui launches a dynamic skyline query to search
the similar data records with regard to q. First, ui encrypts
q into E(q) with the public key pk of SHE. Then, ui gen-
erates and sends E(q)||H(E(q), kui)||IDui to CS1. Using the
similar approach introduced in the data outsourcing phase,
CS1 checks whether H(E(q), kui) is correct. If yes, CS1 per-
forms our privacy-preserving dynamic skyline query scheme
(Section IV-B) to obtain the encrypted dynamic skyline points.
We denote these skyline points as {E(x̃i) | i ∈ [1, w]}, where
w is the number of skyline points.

Next, CS1 generates a random number r and computes {rj
i =

H(r, i||j) | i ∈ [1, w], j ∈ [1, d], rj
i ∈ {0, 1}k1}. Furthermore,

CS1 adds these random numbers (noises) to the corresponding
skyline point, i.e., E(x̃j

i + rj
i). Afterward, CS1 sends {E(x̃j

i +
rj

i)|i ∈ [1, w], j ∈ [1, d]} to CS2 and r to the query user ui.
For CS2, it will recover {x̃j

i+ rj
i|i ∈ [1, w], j ∈ [1, d]} with the

secret key sk of SHE and returns them to ui.
4) Local Diagnosis: After receiving r and {x̃j

i + rj
i|i ∈

[1, w], j ∈ [1, d]}, ui first computes {rj
i = H(r, i||j) | i ∈

[1, w], j ∈ [1, d]}. Then, it is easy for ui to remove the random
noises from {x̃j

i+ rj
i|i ∈ [1, w], j ∈ [1, d]}. Based on the recov-

ered medical data (including diagnostic results), the doctor ui

can have a primary diagnosis for the patient pi.

V. SECURITY ANALYSIS

In this section, we analyze the security of our dynamic
skyline query. Following our design goal, we focus on the pri-
vacy preservation of the proposed scheme. Since our proposed
scheme is based on SMINn and SDD protocols, in which the
SDD protocol adopts our secure atomic protocols as building
blocks, we first analyze the privacy preservation of the atomic
protocols, SMINn, and SDD protocols.

A. Atomic Protocols Are Privacy Preserving

Our designed SHE-based atomic protocols: SLESS and
SEQ, should guarantee that the plaintexts of inputs {m1, m2},
output δ, and the relations of inputs {m1 < m2, m1 = m2} are
kept secret from CS1 and CS2.

For CS1: In these protocols, CS1 holds the inputs and output
that are encrypted by SHE. Since SHE has been proven to be
semantically secure against IND-CPA in [10], CS1 will not
know the plaintexts of inputs and output without the secret
key sk of SHE. In the process of executing these protocols,
CS1 receives E(θ) and obtains the relations of inputs by

E(δ) =
{

E(θ), if s = 1
E(1− θ), if s = −1.

Since CS1 does not have sk, the security of SHE ensures that
CS1 cannot know whether m1 < m2 in SLESS and m1 = m2 in
SEQ. Therefore, the inputs, output, and the relations of inputs
are kept secret from CS1.

For CS2: It can recover α using the authorized sk, i.e.,

α = s · r1 · (m1 − m2)+ s · r2 in SLESS

α = s · r1 · (m1 − m2)
2 − s · r2 in SEQ.

However, the difference between m1 and m2 is protected by
two random numbers r1 and r2. Therefore, CS2 cannot infer
m1 and m2 from α in both protocols. Regarding the relation
of inputs, although CS2 can determine whether α < 0 and let
θ = 1 (otherwise, θ = 0), we employ the flip-coin mechanism
to make CS2 unable to learn whether α < 0 means m1 < m2
(in SLESS) or m1 = m2 (in SEQ). As a result, the inputs,
output, and the relations of inputs are kept secret from CS2.
Besides, there is no collusion between CS1 and CS2. Thus,
our designed SHE-based atomic protocols: SLESS and SEQ,
are privacy preserving.

B. SMINn and SDD Protocols Are Privacy Preserving

As for the SMINn and SDD protocols, CS1 has the SHE
encrypted inputs and outputs, while CS2 holds the secret
key sk. Since CS1 does not have the secret key of SHE, and
there is no collusion between CS1 and CS2, CS1 cannot know
the plaintexts of inputs and outputs from their ciphertexts in
static, which is guaranteed by the security of SHE. Therefore,
in the following parts, we only analyze the privacy preservation
of these protocols when they are running.

1) SMINn Protocol Is Privacy Preserving: Our SMINn pro-
tocol should guarantee that neither CS1 nor CS2 knows the
plaintexts of {E(mmin), E(mi) | i ∈ [1, n]} or the information
about which item in {E(mi) | i ∈ [1, n]} is the minimum one.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

9982 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

For CS1: It obtains the minimum value E(mmin) by recur-
sively computing E(ms) = ∑2k−1

j=0 (E(δj) · E(m′j)) for each
group, where E(m′j) is generated by dividing {E(mi) | i ∈
[1, n]} into groups, and E(δj) is calculated by the privacy-
preserving XNOR gate. First, since CS1 processes {E(mi) | i ∈
[1, n]} in their ciphertexts, it cannot know m′j and mi without
sk. Second, recalling Section IV-A1, our XNOR gate can guar-
antee the operator (CS1) has no idea on its output E(δj). That is
because the output E(δj) is homomorphically computed from
the encrypted input (see (2)). Consequently, CS1 cannot know
the minimum value ms in a group, and thus, the final mini-
mum value mmin is kept secret from CS1. Hence, the plaintexts
of {E(mmin), E(mi) | i ∈ [1, n]} are kept secret from CS1. In
addition, since CS1 receives the encrypted index bit sequence,
i.e., {E(bφ[i]) | i ∈ [0, k − 1]}, it cannot infer which item is
minimum in the group. Thus, CS1 does not know which item
in {E(mi) | i ∈ [1, n]} is the minimum one.

For CS2: It can recover {m̃j = r2k ·m′j + rj | j ∈ [0, 2k − 1]}
using the authorized sk and construct a system of equations⎧⎪⎪⎨

⎪⎪⎩

m̃0 = r2k · m′0 + r0
m̃1 = r2k · m′1 + r1
· · · · · ·
m̃2k−1 = r2k · m′2k−1

+ r2k−1.

Since the above system has 2k + 1 random numbers, CS2
cannot solve the system to obtain {m′j | j ∈ [0, 2k − 1]}.
Furthermore, in the last group, although CS2 can obtain m̃min,
the actual minimum value is perturbed by r2k and a cor-
responding random number. As a result, the plaintexts of
{E(mmin), E(mi) | i ∈ [1, n]} are kept secret from CS2. Besides,
before sending group’s members to CS2, CS1 adopts the per-
mutation technique to permute them. Therefore, CS2 learns
nothing about which item is selected as the minimum value.
Thus, the SMINn protocol is privacy preserving.

2) SDD Protocol Is Privacy Preserving: Our SDD proto-
col should guarantee that the input plaintexts {ti

1 = (xi
1 −

qi)2,ti
2 = (xi

2−qi)2 | i ∈ [1, d]}, output δ, single-dimensional
privacy, and the dominance relation of inputs are kept secret
from CS1 and CS2. Note that in this article, the single-
dimensional privacy indicates each dimension’s order and
equality relations of two given data records.

For CS1: It always processes inputs over their ciphertexts
and exploits the homomorphic properties of SHE to compute
the final output E(δ). Consequently, CS1 cannot know the
input plaintexts, output plaintext, and the dominance relation.
Since CS1 receives the encrypted E(θ2), and the output of the
SEQ protocol E(δ1) is also encrypted, CS1 neither knows θ2
nor whether θ1 = θ2 (it is guaranteed by the SEQ protocol).
Therefore, CS1 learns nothing about the single-dimensional
privacy of inputs.

For CS2: It can first recover {αi = si · ri
i · (ti

1 − ti
2) − si ·

ri
2 | i ∈ [1, d]}. However, the difference between ti

1 and ti
2

is protected by two random numbers. Therefore, CS2 cannot
infer {ti

1,t
i
2}. Meanwhile, the privacy preservation of SLESS

and SEQ guarantees that CS2 cannot know the actual value of
δ1 and δ2 due to the flip-coin mechanism. As a result, CS2 has
no knowledge about the output plaintext and the dominance
relation. For the single-dimensional privacy, since we integrate

the flip-coin mechanism to compute αi, CS2 learns nothing
about the single-dimensional privacy of inputs. Thus, the SDD
protocol is privacy preserving.

C. Proposed Scheme Is Privacy Preserving

Our proposed scheme should guarantee that the outsourced
data sets, query requests, and query results are kept secret from
CS1 and CS2. Meanwhile, our proposed scheme should hide
access patterns. In our scheme, the outsourced data sets and
query requests are used to retrieve dynamic skyline.

For CS1: From Algorithm 1, we can see that all of the oper-
ations in CS1 are conducted over SHE ciphertexts. Therefore,
CS1 cannot obtain the plaintexts of outsourced data sets, query
requests, and query results without sk. Note that in traversing
PM-tree, the privacy-preserving XNOR gate guarantees the
minimum value flags are kept secret from CS1 as we discussed
in Section V-B. Besides, since the dynamic skyline points are
computed from all encrypted data points {E(xi) | i ∈ [1, n]} by
applying homomorphic properties, CS1 does not know which
items are selected as skyline points, i.e., the access pattern is
protected in CS1.

For CS2: It can only touch information through the process
of performing SMINn and SDD protocols, and we have shown
that both the protocols are privacy preserving. Therefore, CS2
cannot know the plaintexts of outsourced data sets, query
requests, and query results in retrieving dynamic skyline.
Besides, the security of the SMINn protocol guarantees that
CS2 learns nothing about which items are selected as the sky-
line point, i.e., access pattern is hidden. After retrieving skyline
points, CS1 sends {E(x̃j

i + rj
i)|i ∈ [1, w], j ∈ [1, d]} to CS2,

and CS2 can recover {x̃j
i + rj

i}. However, each x̃j
i is protected

by a random number rj
i. As a result, CS2 cannot infer x̃j

i from
x̃j

i + rj
i. Thus, the proposed scheme is privacy preserving.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme and compare it with the alternative scheme in
terms of computational and communication costs. Recalling
Section IV-C, the data outsourcing and local diagnosis phases
only involve data encryption and noise removal, respectively,
which are efficient and intuitive in terms of performance.
Therefore, in this section, we mainly focus on the performance
of the dynamic skyline search phase.

Experimental Setting: Our scheme was implemented in Java
and executed on a machine with 16-GB memory, 3.4-GHz Intel
Core i7-3770 processors, and Ubuntu 16.04 OS. In our exper-
iments, we adopt a real-world data set about eye state [19]. In
total, there are about 14 000 data records, and each record
has 14 attributes. Since the maximum difference of these
attributes is less than 500, we set MAX = 5002 · d · (n + 1),
where d and n are the number of dimensions and data records
used in our experiments, respectively. In addition, we set
k = 2 in the SMINn protocol, i.e., there are four mem-
bers in a group. For security parameters of SHE, we let
k0 = 8192, k1 = 40, k2 = 160. The maximum multiplicative
depth of our scheme is �log n� + 5 = 19, which is less than
σ = �(k0/2k2) − 1� = 24. Therefore, we can avoid applying

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING DYNAMIC SKYLINE QUERY IN ONLINE MEDICAL DIAGNOSIS 9983

(a) (b)

Fig. 5. Computational costs of dynamic skyline search. (a) Varying with the
number of data records n, d = 3. (b) Varying with the number of dimensions
d, n = 1000.

the bootstrapping protocol. Note that under such a setting of
SHE, our proposed scheme can support a data set containing
tens of millions of data records, which is enough for most data
sets. For the case that the data set size is increasing, the boot-
strapping protocol [10] is recommended if the data set size
exceeds the maximum limit. This is because it avoids reset-
ting these security parameters and thus, reencrypting all data
records.

A. Performance of Our Proposed Scheme

In this section, we explore the performance of our proposed
scheme in searching dynamic skyline, which consists of three
phases: 1) preprocessing; 2) finding one skyline point; and
3) updating sum values. From Algorithm 1, we can see that
the performance of our scheme is related to the number of data
records n and dimensions d. Therefore, in the following, we
will show the computational and communication costs varying
with n and d in these three phases.

1) Computational Costs of Searching Skyline: Fig. 5
depicts the computational cost of our scheme in searching
dynamic skyline, in which we vary the number of data records
n from 1000 to 10 000 and the number of dimensions d from
3 to 10. Both Fig. 5(a) and (b) shows that the computational
costs of these phases are linearly increasing with the corre-
sponding parameters. However, the computational cost of the
preprocessing phase is significantly less than that of finding
one skyline point and updating sum values phases, as shown in
Fig. 5(a) and (b). It is reasonable since our scheme performs
the preprocessing phase only once, while the last two phases
need to repeat w (the number of skyline points) times. Fig. 5(a)
shows that the finding one skyline point phase takes more time
than the updating sum values phase when the growth of n.
That is because, in the finding phase, CS1 needs to traverse
the PM-tree, whose height is related to n. In Fig. 5(b), the
updating sum values phase is more expensive that the find-
ing one skyline point phase. In fact, to ensure the security of
our scheme, we employ the flip-coin mechanism in the SDD
protocol, in which CS1 needs to choose two random numbers
for each dimension. Thus, the third phase is more expensive
when d is increasing.

2) Communication Costs of Searching Skyline: Fig. 6 plots
the communication cost of searching dynamic skyline, in
which Fig. 6(a) varies the number of data records n, while
Fig. 6(b) varies the number of dimensions d. Since there is

(a) (b)

Fig. 6. Communication costs of dynamic skyline search. (a) Varying with the
number of data records n, d = 3. (b) Varying with the number of dimensions
d, n = 1000.

no interaction between CS1 and CS2 in the preprocessing
phase, the communication overhead in this phase is always 0.
Thus, we do not show the evaluation of the preprocessing
phase in Fig. 6. For the finding one skyline point phase,
Fig. 6(a) shows that the communication cost of this phase
is linearly increasing with n, while Fig. 6(b) demonstrates
that it has nothing to do with d. That is because there are
�([n− 1]/[2k − 1])� · (2k + k) SHE ciphertexts in this phase.
For the third phase, the communication cost is introduced by
the SDD protocol. We know that our SDD protocol needs
(d + 5) SHE ciphertexts. Therefore, for each skyline search
round, there are n(d + 5) SHE ciphertexts. Thus, both Fig. 6(a)
and (b) presents a linear trend. Note that since we set k = 2,
n(d + 5) > �([n− 1]/[2k − 1])� · (2k + k) ≈ 2(n − 1).
As a result, in both figures, the updating sum values phase is
more expensive than the finding one skyline point phase in the
communication cost.

B. Comparison With Alternative Scheme

In this section, we compare our scheme with Liu et al.’s
scheme (denoted as LYXP17) [4], which also designed a
secure dynamic skyline query scheme without leaking plain-
texts, single-dimensional privacy, and access patterns. To the
best of our knowledge, LYXP17 is the only scheme that has
the same security level as our proposed scheme in searching
dynamic skyline. Since LYXP17 employed the Paillier encryp-
tion as the primitive cryptosystem and the protocols introduced
in [20] as their basic secure protocols, the scheme would
take a lot of time when the data volume is large. To reason-
ably reduce the evaluation time, we set the security parameter
of Paillier as the lowest level, i.e., 512, and the number of
data records from 100 to 1000. Note that our scheme can
also adopt the data partitioning technique in [4] to further
improve performance. To clearly present the improvement of
our proposed scheme, we compare our scheme with LYXP17
without using this optimization technique.

1) Comparing Computational Costs in Searching Skyline:
Fig. 7 depicts the comparison results of our scheme and
LYXP17 in the computational cost. In Fig. 7(a), we vary the
number of data records n from 100 to 1000, while it is 3 to 10
for the number of dimensions d in Fig. 7(b). We can see that
both the figures show our scheme achieves up to two orders
of magnitude better performance than LYXP17. There are two
reasons for such a big improvement. First, SHE is much more

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

9984 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

(a) (b)

Fig. 7. Comparison of computational costs in searching dynamic skyline.
(a) Varying with the number of data records n, d = 3. (b) Varying with the
number of dimensions d, n = 100.

(a) (b)

Fig. 8. Comparison of communication costs in searching dynamic skyline.
(a) Varying with the number of data records n, d = 3. (b) Varying with the
number of dimensions d, n = 100.

TABLE II
THEORETICAL ANALYSIS OF THE COMMUNICATION COSTS

efficient that Paillier in encryption and decryption. Second,
we design a set of protocols: the secure atomic protocols, and
SMINn and SDD protocols, which are more efficient than the
secure protocols used in LYXP17.

2) Comparing Communication Costs in Searching Skyline:
Since both our scheme and LYXP17 can adjust the secu-
rity parameters to change the communication overheads, to be
fair, we instead compare the number of ciphertexts transferred
between CS1 and CS2. Fig. 8(a) shows that our scheme is
better than LYXP17 in the communication cost around 8.1×,
while it is at least 8.1× when varying the number of dimen-
sions, as shown in Fig. 8(b). When d = 10, our scheme is
about 11.3× better than LYXP17. To clearly explain the rea-
sons, we present the theoretical analysis of communication
costs in Table II.

From Table II, we can see that our scheme has fewer com-
munication costs in all phases. To ease of evaluation, we
assume the secure comparison protocols in LYXP17, such as
SLESS and SEQ, have only one communication round and two
transferred ciphertexts, which is the same as our comparison
protocols. In fact, the comparison protocols used in LYXP17
have more communication rounds and transferred ciphertexts.
Therefore, our scheme is at least 8.1× better than LYXP17 in
the communication cost.

VII. RELATED WORK

With increasing awareness of privacy protection and the
wide application of skyline queries, there has been a lot of
research devoted to processing skyline queries over encrypted
data [2], [4], [6], [11]–[13]. Bothe et al. [11] transformed
the skyline computation into a nondescending series and
adopted matrix encryption as the primitive cryptosystem. This
scheme is not semantically secure, and an adversary can
launch a known plaintext attack to determine the secret keys.
Zheng et al. [6] proposed a noninteractive data comparison
protocol to determine dominance relations over encrypted data.
However, this work mainly focused on the secure data merg-
ing technique and did not consider the single-dimensional
privacy and access patterns in computing skyline. Based on
the bloom filter technique and a variant of ElGamal encryp-
tion, Zhang et al. [12] presented a secure probabilistic skyline
query scheme for work selection in the mobile crowdsensing
scenario. This work is to deal with the probabilistic skyline
query rather than the dynamic skyline query that is used in our
scheme. Meanwhile, although the proposed scheme [12] can
hide the difference between two messages, it cannot preserve
the single-dimensional privacy and hide access patterns. In the
eHealthcare scenario, Hua et al. [2] implemented a privacy-
preserving online primary diagnosis system with skyline query.
In this scheme, the service provider holds two skyline point
sets, in which the elements are encoded, permuted, and per-
turbed. When a user (patient) would like to enjoy the online
primary diagnosis, he/she interacts with the service provider
to determine whether the sensed data record dominates the
points in these two sets. Different from our scheme that uses
the dynamic skyline query, the work in [2] adopted the basic
skyline computation to make the online primary diagnosis.

Recently, the works in [4], [13], [21], and [22] sepa-
rately proposed schemes to achieve secure dynamic skyline
queries. Wang et al. [13] employed the ORE to encrypt
the outsourced data. Obviously, it leaked the order relations
for a single dimension and also did not hide access pat-
terns. Wang et al. [21] presented a secure skyline query
scheme under the secure hardware (SGX) model instead of
the semi-honest two-server model. Besides, this approach
leaks the access patterns that are protected in our work.
Zeighami et al. [22] proposed a scheme to use query result
materialization for answering dynamic skyline queries on
encrypted data. However, it focused on building the result
materialization structure in a reasonable time while keeping
the storage overhead at practical levels, which cannot address
the problems in this work. Liu et al. [4] designed a fully
secure dynamic skyline scheme that can preserve the privacy
of plaintexts, single-dimensional privacy, and access patterns.
However, this scheme is not efficient enough. Our proposed
scheme can achieve the same security level as [4] while
significantly reducing the computational and communication
costs.

VIII. CONCLUSION

In this article, we have proposed an efficient and privacy-
preserving dynamic skyline query scheme that allows doctors

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ACHIEVING EFFICIENT AND PRIVACY-PRESERVING DYNAMIC SKYLINE QUERY IN ONLINE MEDICAL DIAGNOSIS 9985

to make a similar search over encrypted data in the online
medical diagnosis system. Specifically, we first defined the
dynamic skyline query and introduced the SHE. Then, we
presented two secure atomic protocols, i.e., SLESS and SEQ,
in which we employed the flip-coin mechanism to ensure
security. Based on these atomic protocols, we designed an
SDD protocol to securely determine dominance relations.
Meanwhile, we proposed a privacy-preserving XNOR gate and
a private minimum tree (PM-tree) to construct our SMINn pro-
tocol. With all of the above protocols, we carefully designed
our dynamic skyline query scheme to preserve privacy while
achieving high efficiency. Finally, we analyzed the security
of our scheme and conducted extensive experiments to eval-
uate it. The results show that our scheme is efficient in both
computation and communication.

REFERENCES

[1] H. Habibzadeh, K. Dinesh, O. R. Shishvan, A. Boggio-Dandry,
G. Sharma, and T. Soyata, “A survey of Healthcare Internet of Things
(HIoT): A clinical perspective,” IEEE Internet Things J., vol. 7, no. 1,
pp. 53–71, Jan. 2020.

[2] J. Hua et al., “CINEMA: Efficient and privacy-preserving online medical
primary diagnosis with skyline query,” IEEE Internet Things J., vol. 6,
no. 2, pp. 1450–1461, Apr. 2019.

[3] S. Ivanov, C. Foley, S. Balasubramaniam, and D. Botvich, “Virtual
groups for patient WBAN monitoring in medical environments,” IEEE
Trans. Biomed. Eng., vol. 59, no. 11, pp. 3238–3246, Nov. 2012.

[4] J. Liu, J. Yang, L. Xiong, and J. Pei, “Secure skyline queries on cloud
platform,” in Proc. IEEE ICDE, 2017, pp. 633–644.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in Proc. SIGMOD, 2003, pp. 467–478.

[6] Y. Zheng, R. Lu, B. Li, J. Shao, H. Yang, and K.-K. R. Choo, “Efficient
privacy-preserving data merging and skyline computation over multi-
source encrypted data,” Inf. Sci., vol. 498, pp. 91–105, Sep. 2019.

[7] E. Shi, J. Bethencourt, T. H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proc. IEEE Symp.
Security Privacy, 2007, pp. 350–364.

[8] R. Li and A. X. Liu, “Adaptively secure conjunctive query processing
over encrypted data for cloud computing,” in Proc. IEEE ICDE, 2017,
pp. 697–708.

[9] C. Guo, R. Zhuang, C. Su, C. Z. Liu, and K.-K. R. Choo, “Secure and
efficient k nearest neighbor query over encrypted uncertain data in cloud-
IoT ecosystem,” IEEE Internet Things J., vol. 6, no. 6, pp. 9868–9879,
Dec. 2019.

[10] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,”
IEEE Trans. Depend. Secure Comput., early access, Feb. 23, 2021,
doi: 10.1109/TDSC.2021.3061611.

[11] S. Bothe, A. Cuzzocrea, P. Karras, and A. Vlachou, “Skyline query
processing over encrypted data: An attribute-order-preserving-free
approach,” in Proc. PSBD@CIKM, 2014, pp. 37–43.

[12] X. Zhang, R. Lu, J. Shao, H. Zhu, and A. A. Ghorbani, “Secure and
efficient probabilistic skyline computation for worker selection in MCs,”
IEEE Internet Things J., vol. 7, no. 12, pp. 11524–11535, Dec. 2020.

[13] W. Wang et al., “Scale: An efficient framework for secure dynamic
skyline query processing in the cloud,” in Proc. Int. Conf. Database
Syst. Adv. Appl., 2020, pp. 288–305.

[14] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: ramification, attack and mitigation,” in Proc.
NDSS, 2012, pp. 1–9.

[15] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. SIGSAC, 2015, pp. 644–655.

[16] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in Proc. NDSS, 2015, p. 4325.

[17] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani,
“Achieving O(log3n) communication-efficient privacy-preserving range
query in fog-based IoT,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5220–5232, Jun. 2020.

[18] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatio-temporal keyword query for
its in 6G era,” IEEE Internet Things J., early access, Jul. 12, 2021,
doi: 10.1109/JIOT.2021.3096674.

[19] O. Roesler. (2019). EEG Eye State. [Online]. Available:
https://datahub.io/machine-learning/eeg-eye-state

[20] T. Veugen, F. Blom, S. J. de Hoogh, and Z. Erkin, “Secure comparison
protocols in the semi-honest model,” IEEE J. Sel. Topics Signal Process.,
vol. 9, no. 7, pp. 1217–1228, Oct. 2015.

[21] J. Wang, M. Du, and S. S. Chow, “Stargazing in the dark: Secure skyline
queries with SGX,” in Proc. Int. Conf. Database Syst. Adv. Appl., 2020,
pp. 322–338.

[22] S. Zeighami, G. Ghinita, and C. Shahabi, “Secure dynamic skyline
queries using result materialization,” in Proc. IEEE 37th Int. Conf. Data
Eng. (ICDE), 2021, pp. 157–168.

Songnian Zhang received the M.S. degree from
Xidian University, Xi’an, China, in 2016. He is cur-
rently pursuing the Ph.D. degree with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada.

His research interest includes cloud computing
security, big data query, and query privacy.

Suprio Ray (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science,
University of Toronto, Toronto, ON, Canada, in
2015.

He is an Associate Professor with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada. His research interests
include big data and database management systems,
runtime systems for scalable data science, prove-
nance and privacy issues in big data, and query
processing on modern hardware.

Rongxing Lu (Fellow, IEEE) received the Ph.D.
degree from the Department of Electrical and
Computer Engineering, University of Waterloo,
Waterloo, ON, Canada, in 2012.

He is an Associate Professor and a University
Research Scholar with the Faculty of Computer
Science, University of New Brunswick, Fredericton,
NB, Canada. Before that, he worked as an
Assistant Professor with the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore, from April 2013 to August

2016. He worked as a Postdoctoral Fellow with the University of Waterloo
from May 2012 to April 2013.

Dr. Lu was awarded the most prestigious Governor General’s Gold Medal
in 2012 and the 8th IEEE Communications Society Asia Pacific Outstanding
Young Researcher Award in 2013.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2021.3061611
http://dx.doi.org/10.1109/JIOT.2021.3096674

9986 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Yandong Zheng received the M.S. degree from
the Department of Computer Science, Beihang
University, Beijing, China, in 2017. She is cur-
rently pursuing the Ph.D. degree with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada.

Her research interest includes cloud computing
security, big data privacy, and applied privacy.

Yunguo Guan is currently pursuing the Ph.D.
degree with the Faculty of Computer Science,
University of New Brunswick, Fredericton, NB,
Canada.

His research interests include applied cryptogra-
phy and game theory.

Jun Shao (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
Shanghai, China, in 2008.

He was a Postdoctoral Fellow with the School of
Information Sciences and Technology, Pennsylvania
State University, Pennsylvania, PA, USA, from 2008
to 2010. He is currently a Professor with the School
of Computer and Information Engineering, Zhejiang
Gongshang University, Hangzhou, China. His cur-
rent research interests include network security and
applied cryptography.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:01:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

